Page 252 - Khoa Sư Phạm | Kỷ yếu hoạt động khoa học Khoa Sư phạm 2016 - 2020
P. 252

ON CONSTANT INTERVAL FACTOR IN INTEGRAL OF

                                           INTERVAL VALUED FUNCTIONS
                                                                                       1
                                                                 Bui Thi Phuong Thao , Tran Thanh Tung      2

                      Received Date: 20/7/2016; Revised Date: 01/8/2016; Accepted for Publication: 15/8/2016

                                                          SUMMARY

                     In  this  paper,  we  state  and  prove  that  a  constant-interval  factor  can  be  moved
                  outside the integral sign of integral of interval valued functions.
                     Keywords: Interval valued functions, Integral of Interval valued functions.

                                                  TÀI LIỆU THAM KHẢO
                  Aumann,  R.J.  (1965).  Integrals  of  Set-valued  Functions.  Journal  of  Mathematical

                     Analysis and Applications, 12, 1-12.
                  Chalco-Cano,  Y.,  Rufián-Lizana,  A.,  Román-Flores, H.,  Jiménez-Gamero,  M.D.
                     (2013).   Calculus  for  interval-valued  functions  using  generalized  Hukuhara
                     derivative and applications. Fuzzy Sets and Systems, 219, 49-67.
                  Lakshmikantham,  V.,  Bhaskar,  T.G.,  Devi,  J.  V.  (2006).  Theory  of  set  differential
                     equations in metric spaces. Cambridge Scientific Publishers.
                  Moore, R.E., Kearfott, R.B., Cloud, M. J. (2009). Introduction to Interval Analysis.
                     SIAM Society for Industrian and Applied Mathematics, Philadelphia.

                  Stefanini,  L., Bede,  B.  (2009).  Generalized  Hukuhara  differentiability  of  interval-
                     valued  functions  and  interval  differential  equations.  Nonlinear  Analysis:  Theory,
                     Methods & Applications, 71, 3–4, 1311–1328.
                  Stefanini, L. (2008). A generalization of Hukuhara difference for interval and fuzzy
                     arithmetic, in: D. Dubois, M.A. Lubiano, H. Prade, M.A. Gil, P. Grzegorzewski, O.
                     Hryniewicz  (Eds.).  Soft  Methods  for  Handling  Variability  and  Imprecision,  in:

                     Series  on  Advances  in  Soft  Computing,  48,  Springer,  2008,  extended  version:
                     http://econpapers.repec.org/RAS/pst233.htm.
   247   248   249   250   251   252   253   254   255   256   257